Molecular basis of substrate translocation through the outer membrane channel OprD of Pseudomonas aeruginosa.
نویسندگان
چکیده
The objective of this study is to identify the structural features governing the transport of molecules through nanometric channel proteins at a molecular level. Our focus is to come up with a precise understanding of the structure and dynamics of the outer membrane porin OprD of the Gram-negative bacterium Pseudomonas aeruginosa by studying the translocation of natural amino acid residues/substrates through it. We used in silico electrophysiology and metadynamics simulation techniques as they can provide precise information on the molecule/channel interactions at the atomic scale that allows testing quantitative structure-function relationships. We performed our simulations on the whole OprD protein, with all loops modelled and without any constraints to keep the channel open. Dynamics of both internal and external loops and the polar nature of the eyelet region play important roles in modulating the translocation of molecules through OprD by creating two alternative paths for translocation. All positive residues take the main path upon binding in the negative pocket just above the constriction region. The same factor is unfavourable for negative substrates and hence they have a relatively high barrier for translocation. Differently, neutral substrates do not show any specificity and they can follow the two alternative paths.
منابع مشابه
Outer Membrane Protein D Gene in Clinical Isolates of Pseudomonas Aeruginosa and its Role in Antibiotic Resistance
Background & Objectives: Pseudomonas aeruginosa is a common cause of nosocomial infection. OprD protein is a specific protein regulating the uptake of carbapenem antibiotic. Loss of OprD is the main mechanism of Pseudomonas Aeruginosa resistance to carbapenem. In this study, the presence of OprD gene is investigated in isolated Pseudomonas Aeruginosa in burn patients of Ghotboddin hospital in S...
متن کاملMolecular Investigation of Outer Membrane Channel Genes Among Multidrug Resistance Clinical Pseudomonas Aeruginosa Isolates
Background: Multidrug resistance Pseudomonas aeruginosa (MDRPA) is most important issue in healthcare setting. It can secrete many virulence effector proteins via its secretion system type (T1SS-T6SS). They are using them as conductor for delivering the effector proteins outside to begins harmful effect on host cell increasing pathogenicity, competition against other microorganism and nutrient ...
متن کاملDetection of outer membrane porin protein, an imipenem influx channel, in Pseudomonas aeruginosa clinical isolates.
Decreased permeability to imipenem is the most frequent mechanism of imipenem resistance in Pseudomonas aeruginosa. We have determined the presence of OprD porin protein, an imipenem influx channel, in 70 carbapenem-resistant P. aeruginosa clinical isolates by Western blot analysis using rabbit anti-OprD polyclonal antibody. Ninety-eight percent (54 of 55 isolates) of imipenem-and meropenem-res...
متن کاملRole of the novel OprD family of porins in nutrient uptake in Pseudomonas aeruginosa.
To circumvent the permeability barrier of its outer membrane, Pseudomonas aeruginosa has evolved a series of specific porins. These channels have binding sites for related classes of molecules that facilitate uptake under nutrient-limited conditions. Here, we report on the identification of a 19-member family of porins similar to the basic-amino-acid-specific porin OprD. The members of this fam...
متن کاملCharacterization of OpdH, a Pseudomonas aeruginosa porin involved in the uptake of tricarboxylates.
The Pseudomonas aeruginosa outer membrane is intrinsically impermeable to many classes of antibiotics, due in part to its relative lack of general uptake pathways. Instead, this organism relies on a large number of substrate-specific uptake porins. Included in this group are the 19 members of the OprD family, which are involved in the uptake of a diverse array of metabolites. One of these porin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 37 شماره
صفحات -
تاریخ انتشار 2015